says, 'the prudence and philosophical reserve shown by M. Arago in resisting the temptation to give a theory of the effect he had discovered, so long as he could not devise one which was perfect in its application, and in refusing to assent to the imperfect theories of others.' Now, however, the time for theory had come. Faraday saw mentally the rotating disk, under the operation of the magnet, flooded with his induced currents, and from the known laws of interaction between currents and magnets he hoped to deduce the motion observed by Arago. That hope he realised, showing by actual experiment that when his disk rotated currents passed through it, their position and direction being such as must, in accordance with the established laws of electro-magnetic action, produce the observed rotation.

Introducing the edge of his disk between the poles of the large horseshoe magnet of the Royal Society, and connecting the axis and the edge of the disk, each by a wire with a galvanometer, he obtained, when the disk was turned round, a constant flow of electricity. The direction of the current was determined by the direction of the motion, the current being reversed when the rotation was reversed. He now states the law which rules the production of currents in both disks and wires, and in so doing uses, for the first time, a phrase which has since become famous. When iron filings are scattered over a magnet, the particles of iron arrange themselves in certain determinate lines called magnetic curves. In 1831, Faraday for the first time called these curves 'lines of magnetic force'; and he showed that to produce induced currents neither approach to nor withdrawal from a magnetic source, or centre, or pole, was essential, but that it was only necessary to cut appropriately the lines of magnetic force. Faraday's first paper on Magneto-electric Induction, which I have here endeavoured to condense, was read before the Royal Society on the 24th of November, 1831.

On January 12, 1832, he communicated to the Royal Society a second paper on Terrestrial Magneto- electric Induction, which was chosen as the Bakerian Lecture for the year. He placed a bar of iron in a coil of wire, and lifting the bar into the direction of the dipping needle, he excited by this action a current in the coil. On reversing the bar, a current in the opposite direction rushed through the wire. The same effect was produced when, on holding the helix in the line of dip, a bar of iron was thrust into it. Here, however, the earth acted on the coil through the intermediation of the bar of iron. He abandoned the bar and simply set a copper plate spinning in a horizontal plane; he knew that the earth's lines of magnetic force then crossed the plate at an angle of about 70°. When the plate spun round, the lines of force were intersected and induced currents generated, which produced their proper effect when carried from the plate to the galvanometer. 'When the plate was in the magnetic meridian, or in any other plane coinciding with the magnetic dip, then its rotation produced no effect upon the galvanometer.'

At the suggestion of a mind fruitful in suggestions of a profound and philosophic character--I mean that of Sir John Herschel-- Mr. Barlow, of Woolwich, had experimented with a rotating iron shell. Mr. Christie had also performed an elaborate series of experiments on a rotating iron disk. Both of them had found that when in rotation the body exercised a peculiar action upon the magnetic needle, deflecting it in a manner which was not observed during quiescence; but neither of them was aware at the time of the agent which produced this extraordinary deflection. They ascribed it to some change in the magnetism of the iron shell and disk.

But Faraday at once saw that his induced currents must come into play here, and he immediately obtained them from an iron disk. With a hollow brass ball, moreover, he produced the effects obtained by Mr. Barlow. Iron was in no way necessary: the only condition of success was that the rotating body should be of a character to admit of the formation of currents in its substance: it must, in other words, be a conductor of electricity. The higher the conducting power the more copious were the currents. He now passes from his little brass globe to the globe of the earth. He plays like a magician with the earth's magnetism. He sees the invisible lines along which its magnetic action is exerted, and sweeping his wand across these lines evokes this new power. Placing a simple loop of wire round a magnetic needle he bends its upper portion to the west: the north pole of the needle immediately swerves to the east: he bends his loop to the east, and the north pole moves to the west. Suspending a common bar magnet in a vertical position, he causes it to spin round its own axis. Its pole being connected with one end of a galvanometer wire, and its equator with the other end, electricity rushes round the galvanometer from


  By PanEris using Melati.

Previous chapter/page Back Home Email this Search Discuss Bookmark Next chapter/page
Copyright: All texts on Bibliomania are © Bibliomania.com Ltd, and may not be reproduced in any form without our written permission. See our FAQ for more details.