Focus
(
Fodder
(
Fodder
(
Fodder
(
Fodderer
(
Fodient
(


Focus to Fold Focus Thus, in the ellipse FGHKLM, A is the focus and CD the directrix, when the ratios FA:FE, GA:GD, MA:MC, etc., are all equal. So in the hyperbola, A is the focus and CD the directrix when the ratio HA:HK is constant for all points of the curve; and in the parabola, A is the focus and CD the directrix when the ratio BA:BC is constant. In the ellipse this ratio is less than unity, in the parabola equal to unity, and in the hyperbola greater than unity. The ellipse and hyperbola have each two foci, and two corresponding directrixes, and the parabola has one focus and one directrix. In the ellipse the sum of the two lines from any point of the curve to the two foci is constant; that is: AG+GB=AH+HB; and in the hyperbola the difference of the corresponding lines is constant. The diameter which passes through the foci of the ellipse is the major axis. The diameter which being produced passes through the foci of the hyperbola is the transverse axis. The middle point of the major or the transverse axis is the center of the curve. Certain other curves, as the lemniscate and the Cartesian ovals, have points called foci, possessing properties similar to those of the foci of conic sections. In an ellipse, rays of light coming from one focus, and reflected from the curve, proceed in lines directed toward the other; in an hyperbola, in lines directed from the other; in a parabola, rays from the focus, after reflection at the curve, proceed in lines parallel to the axis. Thus rays from A in the ellipse are reflected to B; rays from A in the hyperbola are reflected toward L and M away from B.  




Copyright: All texts on Bibliomania are © Bibliomania.com Ltd, and may not be reproduced in any form without our written permission. See our FAQ for more details.  