• a perfect screen. If we are thinking of light-waves this seems an astonishing opacity for material as tenuous as air; but we have to remember that it is an opacity to X-rays, and the practical physicist knows well the difficulty of getting the softer kinds of X-rays to pass through even a few millimetres of air.

    There is a gratifying accordance in general order of magnitude between the opacity inside the star, determined from astronomical observation of leakage, and the opacity of terrestrial substances to X-rays of more or less the same wave-length. This gives us some assurance that our theory is on the right track. But a careful comparison shows us that there is some important difference between the stellar and terrestrial opacity.

    In the laboratory we find that the opacity increases very rapidly with the wave-length of the X-rays that are used. We do not find anything like the same difference in the stars although the X-rays in the cooler stars must be of considerably greater wave-length than those in the hotter stars. Also, taking care to make the comparison at the same wave-length for both, we find that the stellar opacity is less than the terrestrial opacity. We must follow up this divergence.

    There is more than one way in which an atom can obstruct ether-waves, but there seems to be no doubt that for X-rays both in the stars and in the laboratory the main part of the opacity depends on the process of ionization. The ether-wave falls on an atom and its energy is sucked up by one of the planet electrons which uses it to escape from the atom and travel away at high speed. The point to notice is that in the very act of absorption the absorbing mechanism is broken, and it cannot be used again until it has been repaired. To repair it the atom must capture one of the free electrons wandering about, inducing it to take the place of the lost electron.

    In the laboratory we can only produce thin streams of X-rays so that each wave-trap is only called upon to act occasionally. There is plenty of time to repair it before the next time it has a chance of catching anything; and there is practically no loss of efficiency through the traps being out of order. But in the stars the stream of X-rays is exceedingly intense. It is like an army of mice marching through your larder springing the mouse-traps as fast as you can set them. Here it is the time wasted in resetting the traps -- by capturing electrons -- which counts, and the amount of the catch depends almost entirely on this.

    We have seen that the stellar atoms have lost most of their electrons; that means that at any moment a large proportion of the absorption traps are awaiting repair, For this reason we find a smaller opacity in the stars than in terrestrial material. The lowered opacity is simply the result of overworking the absorbing mechanisms -- they have too much radiation to deal with. We can also see why the laws of stellar and terrestrial opacity are somewhat different. The rate of repair, which is the main consideration in stellar opacity, is increased by compressing the material, because then the atom will not have to wait so long to meet and capture a free electron. Consequently the stellar opacity will increase with the density. In terrestrial conditions there is no advantage in accelerating the repair which will in any case be completed in sufficient time; thus terrestrial opacity is independent of the density.

    The theory of stellar opacity thus reduces mainly to the theory of the capture of electrons by ionized atoms; not that this process is attended by absorption of X-rays -- it is actually attended by emission -- but it is the necessary preliminary to absorption. The physical theory of electron-capture is not yet fully definitive; but it is sufficiently advanced for us to make use of it provisionally in our calculations of the hindering factor in the leakage of radiation from the stars.

    The Relation of Brightness to Mass

    We do not want to tackle too difficult a problem at first, and so we shall deal with stars composed of perfect gas. If you do not like the technical phrase 'perfect gas' you can call it simply 'gas', because all the terrestrial gases that you are likely to think of are without sensible imperfection. It is only under high compression that terrestrial gases become imperfect. I should mention that there are plenty of examples of gaseous [Note:Unless otherwise indicated 'gaseous' is intended to mean 'composed of perfect gas'] stars. In many stars the material is so inflated that it is more tenuous than the air around

  By PanEris using Melati.

Previous chapter/page Back Home Email this Search Discuss Bookmark Next chapter/page
Copyright: All texts on Bibliomania are © Bibliomania.com Ltd, and may not be reproduced in any form without our written permission. See our FAQ for more details.