the steam-engine. But at the same time it was necessary to produce the geometrically accurate straight lines, planes, circles, cylinders, cones, and spheres, required in the detail parts of the machines. This problem Henry Maudsley solved in the first decade of this century by the invention of the slide rest, a tool that was soon made automatic, and in a modified form was applied to other constructive machines besides the lathe, for which it was originally intended. This mechanical appliance replaces, not some particular tool, but the hand itself, which produces a given form by holding and guiding the cutting tool along the iron or other material operated upon. Thus it became possible to produce the forms of the individual parts of machinery "with a degree of ease, accuracy, and speed, that no accumulated experience of the hand of the most skilled workman could give."20

If we now fix our attention on that portion of the machinery employed in the construction of machines, which constitutes the operating tool, we find the manual implements re-appearing, but on a cyclopean scale. The operating part of the boring machine is an immense drill driven by a steam-engine; without this machine, on the other hand, the cylinders of large steam-engines and of hydraulic presses could not be made. The mechanical lathe is only a cyclopean reproduction of the ordinary foot-lathe; the planing machine, an iron carpenter, that works on iron with the same tools that the human carpenter employs on wood; the instrument that, on the London wharves, cuts the veneers, is a gigantic razor; the tool of the shearing machine, which shears iron as easily as a tailor's scissors cut cloth, is a monster pair of scissors; and the steam-hammer works with an ordinary hammer head, but of such a weight that not Thor himself could wield it.21 These steam-hammers are an invention of Nasmyth, and there is one that weighs over 6 tons and strikes with a vertical fall of 7 feet, on an anvil weighing 36 tons. It is mere child's-play for it to crush a block of granite into powder, yet it is no less capable of driving, with a succession of light taps, a nail into a piece of soft wood.22

The implements of labour, in the form of machinery, necessitate the substitution of natural forces for human force, and the conscious application of science, instead of rule of thumb. In Manufacture, the organisation of the social labour-process is purely subjective; it is a combination of detail labourers; in its machinery system, Modern Industry has a productive organism that is purely objective, in which the labourer becomes a mere appendage to an already existing material condition of production. In simple co-operation, and even in that founded on division of labour, the suppression of the isolated, by the collective, workman still appears to be more or less accidental. Machinery, with a few exceptions to be mentioned later, operates only by means of associated labour, or labour in common. Hence the co- operative character of the labour-process is, in the latter case, a technical necessity dictated by the instrument of labour itself.

 


SECTION 2

THE VALUE TRANSFERRED BY MACHINERY TO THE PRODUCT


 

We saw that the productive forces resulting from co-operation and division of labour cost capital nothing. They are natural forces of social labour. So also physical forces, like steam, water, &c., when appropriated to productive processes, cost nothing. But just as a man requires lungs to breathe with, so he requires something that is work of man's hand, in order to consume physical forces productively. A water-wheel is necessary to exploit the force of water, and a steam-engine to exploit the elasticity of steam. Once discovered, the law of the deviation of the magnetic needle in the field of an electric current, or the law of the magnetisation of iron, around which an electric current circulates, cost never a penny.23 But the exploitation of these laws for the purposesm of telegraphy, &c., necessitates a costly and extensive apparatus. The tool, as we have seen, is not exterminated by the machine. From being a dwarf implement of the human organism, it expands and multiplies into the implement of a mechanism created by man. Capital now sets the labourer to work, not with a manual tool, but with a machine which itself handles the tools. Although, therefore, it is clear at the first glance that, by incorporating both stupendous physical forces, and the natural sciences, with the process of production, Modern Industry raises the productiveness of labour to an extraordinary degree, it is by no means equally clear, that this increased productive force is not, on the other hand, purchased by an increased expenditure of labour. Machinery, like every other


  By PanEris using Melati.

Previous chapter/page Back Home Email this Search Discuss Bookmark Next chapter/page
Copyright: All texts on Bibliomania are © Bibliomania.com Ltd, and may not be reproduced in any form without our written permission. See our FAQ for more details.